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CURRENT ENHANCEMENT FOR HOSE-UNSTABLE ELECTRON BEAMS

1. Introduction

The propagation of an energetic charged particle beam is controlled by

the electromagnetic fields and forces which act on the beam. These fields and

forces are modified by the electrical properties of the medium surrounding the

beam. An assessment of these modifications is required to accurately predict ?E
beam advance. The net current, defined as the sum of the axial beam current ESE
and the axial conduction current induced in the medium, is a useful indicator :{:
of such modifications. ;gi
Beams passing through a gas ionize the gas and thereby change its iii
conduction properties. In low-pressure gases a two-stream instability can gtf
(S

arise which propels plasma elactrons rorward.1 The forward-moving plasma k@i

- - .

electrons raise the net current for negatively charged beams but lower it for
positively charged beams. For relativistic electron beams, net currents as i

large as three times the beam current have been observed.1‘3 These

enhancements are accompanied by aicrowave emission characteristic of the :;'
plasma-electron oscillation frequency. i;?
At higher pressures, binary collisions between the plasma electrons and ;;%

the gas (ons and molecules damp the two-stream instability and its associated sl
o

current enhancement, Axial plasma currents then develop primarily from :ﬁ:'
: (AN

inductive eoffects which typically drive plasma return current opposite to the EEE
beam 80 as %o minimize changes in magnetic flux. Net currents at high gas \’:
pressures are thus anticipated to be less than the beam current,’ Ezéi
m:pmoved February 7, 1988. ::_:.
;:;
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Recent experiments performed on the Experimentil Test Accelerator (ETA)3-5
and elseuheres'T have shown, however, that the net current can exceed the beam
current, by as much as a factor of two, even at gas pressures of a few hundred
torr, The absence of microwave emission at gas pressures above 10 torr
indicates that this enhancement is not due to the two-stream instabilit;. A
second proposed explanation is energetic secondary electrons (delta rays)
swept forward by the beam self-magnetic field. Estimates of delta-ray
currents show that they are too small (less than 20 percent of the beam
current) to account fully for the enhancement measured.8

In this paper we describe in detail a new and quantitative explanationg'1°
based on the observation that current enhancement at high gas pressures is
associated with large transverse excursions of the beam.3"6 The resistive
hose instability which drives these excursions is particularly troublesome at
gas pressures above a few torr, and develops from magnetic interactions
between the beam current and plasma eddy currents that are inductively
generated by transverse beam motion, Hosing of the beam spatially
redistributaes the net current density and thereby alters the effective system
inductance. A rapid drop in the inductance causes the monopole electric field
(in an azimuthal Fourier expansion) to reverse direction and drive plasma
current parallel to the beam current, Dipole and higher-order {ields
complicate the redistribution of the current denaity but contribute little to
the spatially integrated net current,

According to the present model, current enhancement is thus a natural
outgrowth of large-amplitude hose instability. The inductive effects which
produce the instability aliso produce current enhancement. The enhancement is,
however, a nonlinear effect wnich is significant only for large heam
13

displacements and cannot be seen with linearized codes and models11° that

are vaiid only during the onset and initial growth of the nhose instability.
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In this paper we present analytic and numerical treatments of inductive
current enhancement, The circuit model in Sec. 2 provides a simple yet sound
physical basis for current enhancement due either to beam expanskon_or beam
displacement. In Sec. 3 we give a complete analytic field solution for beam
displacement in a uniform conductivity channel. Here we show that current
gains of three or more are possible if the beam actually strikes a metallic
wall. Consideration of beam dynamics and conductivity evolution suggests,
however, that the nose instability is unlikely to produce current gains much
above a factor of two. In Sec. 4 we present self-consistent numerical
simulations of beam propagation using a new nonlinear particle code, SARLAC,
which treats both large-amplitude hose instability and current enhahcement.
Substantial erhancement (~ 70 percent) is seen for beam displacements out to
half the wall radius, in agreement with the ETA experiments. Because cause-
and-effect relationships between current enhancement and various beam and
cavity parameters are obscured by the complexity and sensitivity of the hose
instability, we also present simplified simulations using a prescribed
dyramical bYeam displacement to further elucidate and verify the analytic

models.
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2. Circuit Analysis

We seek in this section to provide a simple physical basis for current
enhancement due either to beam displacement or expansion. A few models
suffice to demonstrate the effect.

A circuit model is often used to compute the net current In as a function
of beam current I,. For stable beams of constant radius, the circuit model

reduces at high gas pressure to'

3
L I =~ (In - Ib)R (1)

3t “n

where L is the circuit inductance, R is the plasma resistance, and (In - Ib)
i{s the plasma current. This equation relates changes in the magnetic flux L.In
to diffusion of magnetic field through the plasma resistance R. An important
consequence of this equation is that the maximum I, is less than the maximum

Iy (provided I_ < Ib initially). Equation (1) therefore precludes current

——

enhancement:

(max)/I(max)

F= In b

<1,

Equation (1) is valid, however, only if the inductance L is constant. In
general, the inductance is not constant but is a geometrical parameter which
depends on the spatial distribution of the beam, plasma, and bounaary
currents, The doundary current is presumed to reside in a metallic pipe which
encompasses the beam and plasma, Beam displacement and expansion alter the
current distribution and thereby alter the inductance L and flux LIn. To
include these effects an additional term proportional t» In %% must be added

to the left-nand side of Eq. (1), This additional term i3 what produces

current erhancement, Such a possibility has been previously recognized but

not quancified.s"s
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We consider first the case where the plasma conductivity is sufficiently

high to suppress electrostatic effects everywhere inside a perfectly
cornducting (metallic) pipe at radius b. In additiorn we make the long-

wavelength and low-frequency approximations:

olo

] )
ba—z. a—e(( 1 (2)

where ¢ is the speed of light. Maxwell's equations ther reduce to the

magnetostatic Faraday~-Ampere law for the axial vector potential Az:
VA -3 (g +qE) (3)
¢ b z"’

Wwith the axial electric field given by

oA

1 z
Ez- et ()

The plasma conductivity g and beam current density Jb are specified functions

of (CL' t). The boundary condition is

2 0 (5)

at » = b, In subsection 2.2 we extend the aralysis to include electrostatic

effects which arise if the medium is poorly conducting or non-conducting at

radii that are large but still within the pipe. A complete numerical

treatment is given (n Sec. 4,
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u"h '
; Equations (3)-{(5) may be reduced to a simple circuit 2aquation provided ”}4
W ™
: the plasma conductivity is azimuthally symmetric about the pipe center. To %?
5 show this, consider the azimuthally averaged (monopole) component of the Tﬁ
electric fleld: ‘
d :" ]
222
9 - 9 J_21f - F':§
. — k3 .
-zo(r,t) ol e =, . (6) e
o =3
d 'p{-
A
o ":-‘:h
3 By suitabliy integrating £q. (3) and applying £q. (4) and boundary condition o
N A
(5), ore finds that A
\ b .
- 2 dr 3I -
- E, --5[ £ = (1)
- 20 2p I 09t N

where I is the net current flowing within radius r: .
- r 2n e
: I(r,t) = Jar r [ do (J_ + oE_). (8) Ee
o) 4 &

o o _ =

3 . \::
. - o

The plasma current equals the difference between the net current and the N

s heam current: o
%

b 27 e

\ I~ L= J' dr r J’ d8 oE,. (3) e
L o o o
For azimuthally symmetiric conductivity, only the monogole field contrihutes, I_

Hence, f?'
i
b b b,.. g

- 2 dr’ 3I A
. I_=-3I_a J' dr 2nrg = a - — f dr 27ro f — . (10)
: a b 3 20 22 5 A3t S
: R
A
6
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This equation or its equivalent applies to all the arnalytic work presented

* "I \' :h'ﬂ' ;
RS

herein but not to the numerical simulations in Sec. 4 which allow the

y 5

conductivity to be azimuthally asymmetric.

3

o

To express Eq. (10) in a form similar to Eq. (1), we define the radial

-_»

=

Y a

profiies of the net current and plasma conductance, respectively, by

(d

o
!

I(r,t) = I(r,t)/I_(t) (1)

and
- r
I(r,t) =R [ dr 2mro (12)
o]
where
b -1
R(t) = ([ dr 2xro) (13)

o]

is the plasma resistance per unit length. Equation (10) may then be rewritten

as

Q

o [ - =~ - I )i (14
L 3T In + L In (In b)? (14)
where we define L(%t) and L(t) as
b D, ., A
e « & [ar 2wre [ E-1
e o r
and
b b, s a2
. 2R ér” 31
L(t) = = f dr 2s%rg J’ — —
c2 5 r T at
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Integration by parts and use of definition (12, produces an effective system

inductance given by

b

2
Lt) = 5
020

1'%
~1
[ o IR

(15)

and a parameter [ given by

n

D, A
’ ;i ar .
L(s) = = £ = z =, {16)

3
]
c

ct

Circuit equation (14) together with definitions (13), (15), and (18) is
an equivalent and exact representation of the Faraday-Ampere laws (3)-(5),
provided that the plasma conductivity is azimuthally symmetric about the pipe
center. Even for asymmetric conductivity, Eq. (14) is often a good
approximation., 1In this equation, the effective system inductance L is a
geometrical parameter determined by the location of the pipe boundary and by

—

the spatial distributions of the plasma conductivity and net current. The
parameter ﬁ, which was absent from the oariginal circuit equation (1),
represents a change in inductance due to redistribution of the net current,
Note nowever that [ does not equal %% unless the distribution of plasma
conductivity is constant (%? i = Q). Current enhancement i3 possible only
is L <o,

The circuit model offers a simple yet potentiaily accurate means for
computing the net current. The accuracy {s limited primarily by our abilitly
to determine ], L, and { which depend {(weakly) on the spatial distributiscn of

the plasma current and conductivity. In this paper we make only partial use

of the circuit egquation, We nonetheless provide in Appendix A some inductance

formulae which demonstrate the dependence of L on geometry. When using these
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formulae to compute the net current for a prescribed beam perturbation, the
parameter L should generally be assigned a value from one-half to one
times %%.
2.1 E=nhancement Due to Beam Expansion

To demonstrate the utility of the circuit model, consider current
enhancement arising from self-similar expansion of an on-axis beam and
plasma. This example is chosen for illustrative purposes only. We later
concluce, from consideration of beam dvnamics, that beam expansion due to
axisymmetric instabilities such as sausage and hollowing is unlikely to
produce current gains above unity. The high current gains observed
experimentally are shown in subsec¢tion 2.2 and following to arise from hose-
induced bYeam displacement with expansion as a secondary effect.

For self-similar expansion, the distribution functions for current and

conductance become equal:
1(r,t) = I{r,t). an

Equations (15) and (16) then yield

. 1 oL \
L=3% (18]
30 that circuit equation (14) reduces to
3l
n 1 aL  _ _ ’
L 3T 3 In 3t " (In Ib)R. (19)
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An alterrative form is the energy conservation relationship

"'D "". -
& XWX

3 1 2 ) |
3T (E L I!‘. ) = - [(In Ib)R] I.'! (20)

Zy

el

where % L In2 is the stored magnetic field erergy and [(I - Ib)R] I, is the

4} P 3

*s s '
.

rate at which the current I_ extracts energy ohmically from the inductive

7
% "r
et
1y by iy

electric fileld (I, - I,)R.
Rapid expansion maximizes current enhancement and reduces Eq. (20) to

conservation of magnetic field energy:

2
§(L In ) » 0. (21)

Inserting inductance formula (A1) of Appendix A into this relationship yields

a maximum current gain for an expanding on-axis beam and plasma given by

F = In/Lb

in(d/a ) *a

2 F_|s——— . (22)

o ‘in(o/a) + a ¢ T

N ‘-"::‘

Here E is the initial beam radius, a is the expanded »eam radius, £

9

?o = Ino/Ib £ 1 is the current gain immediately prior to expansion, anc . Iﬁf
2 1, . N - o oy
a £ ﬁ 3 3 geometrical constant. Examination of Zg. (19) reveais, however, S

that result (22) i{s valid only if the beam and plasma expand i a time short

compared Wwith the monopole decay time,

- {
T L/R. (23)

-
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Otherwise, ohmic heating extracts sufficient energy during the expansion that
relationship (21) is a poor approximation.

For the ETA experiments where b/ao = 10, Eq. (22) predicts that current
enhancements of 30 percent (F = 1.3) are possible if Fo = 1 and if the beam
radius doubles (a/a° > 2) in less than a monopole decay time Toe The
simulation results presented in Sec. 4.1 show such expansion.

Several observations should be made regarding current erhancement due to
beam expansiorn., The first is that axisymmetric instabilities such as the

sausage and hollowing moces' 6718

can cause the beam to expand and inductively
raise the net current, Yet such expansiorn is unlikely to produce current
gairs above urity. The reason is that beam expansion due to the axisymmetric
resistive instabilities occurs because on-axis plasma current irnitially flows
opposite to the beam current and magretically repels it; as a result, Fo 172
at the onset of the axisymmetric instabilities.‘6'18 Although beam expansion
ircreases F, this in turn strengthens the magnrnetic pinch force on the beam
which restrains or reverses further expansion. Usually1a a dynamic balance (s
reached, or further radial oscillations occur, but with F < 1,

A second observation, direct from result (22), is that the pipe radius b
is the radial scale length governing current enrhancement. This is because the
inductance L changes appreciably only when the beam radius (or beam
dispiacement, as shown irn Sec. 2.2) is non-regligible compared with b. Ore
might surmise that current erhancement carnot occur if the pipe is absent or
very large. Tuis coneclusion is incorrect, however, as shown in 3ec. 2.3 where
we incorporate electrastatic effects into the circuit aralysis., There we show
that 5 {s really the monopole boundary radius at which the zzimuthally

averaged field Ezo falls to zero, and that b is firite if the medium becomes

rop-conducting at large radii (ro - 0 as r » =),
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A third point is that beam expansion is a secondary effect of the
resistive hose instability: as the beam displaces far off axis, it separates
from the centroid of the net current so that the pinch force on the beam
Weakens and the beam expands. The circumstances of this expansion are
sufficiently complex that Eq. (22) should be treated as but a rough guide for
current enhancement due to beam expansion, as distinct from erhancement due to
beam displacement alone.

A fourth observation is that the energy source responsible for producing
and driving the plasma currents is not kinetic beam erergy directly but
magnetic field erergy. In the case of beam expansion the stored magnetic
field erergy not only drives the plasma currents but also accelerates the bheam

to higher energy.

2.2 Epnhancement Due to Beam Displacement

Consider now current enhancement resulting from transverse displacement
of a rigid-rod bYeam of fixed radius a. We again assume that the plasma
conductivity is azinmuthally symmetric about the pipe center. Only the
monopole electric field then contributes to the net current. For other
conductivity configurations the dipole and higher-order fields contribute as
well.

A simple model which provides a semi-quantitative estimate 5f current
anhancement is/;s follows. Imagine a beam which originally resides in a3 fixed
plasma channel centered within a pipe of radius b. The plasma channel and
beam nhave a small radius a << b,

A suddern displacement of the beam to an off-axis location r_ perturbds the

b

plasma currents and wall zurrents. The values of these currents immediately

after the displacement c¢an be readily computed provided: (i) the displacement
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occurs instantaneously; and (ii) the displacea beam is wholly outside the

plasma but wholliy inside the pipe, i.e.,

2a < r_ < b - a. (24)

The plasma then behaves as a perfect conductor while the beam can be treated
as a lire current at Lo
A circuit treatment of this problem i{s given in Appendix A. Here we give
for comparison a field treatment. We begin by dividing the plasma current
into two components. The homogeneous component (s derived by imagining that
the beam current Ib i{s suddenly moved from inside the plasma to outside the

pipe. Because magnetic flux remains trapped within the plasma, the

nomogeneocus plasma current is given by

Iph = Ino (25)
Where Ino is the net current just prior to beam dispiacement,

The driven component of the plasma current 1s derived by lmagining that
the line current Ib is suddenly moved from outside the pipe to the location Eb
inside. For this problem the vector potential Az is zero both at the pipe
boundary, r = 5, and everywnere within the plasma, r { a. These two boundary

conditions determine the driven (surface) plasma current I

od

de evaluate Ipd by Lntegrating the Faraday-Ampere law (3) over r and 3 o

obtain for r > a:

dar 2

dA
20 _ 2. . r-r
- [Ipd I, H(r - r)] (26)
cr
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where H is the Heaviside step function and where the monopole vector potential

is defined by

) 2
A (r) ® 5= £ de A, (r,8). (27)

Integrating Eq. (26) and applying the boundary condition

Azo(a) = 0 (28)
yields
-2_. n +* - n
Azo(r) - 2 EIpd 1n(r/a) Ib H(r rb) l"(r/rb)]. (29)

Applying the boundary condition

Azo(b) -0 (30)
aroduces

522 o ln(b/rb) (31)

Ib ln(bsa) °

Solution (31) for the driven plasma current Ipc has a simple shysical
sasis. 1Injecting a current source Ib netween two c¢onducting surfaces drives

return current in each of the surfaces. The total return current equals

°Ib' The fraction of return current flowing in either one of the surfaces is

-

a function of the surface geometry and of the source location., For coaxial

conductors of inner and suter radii a and 5, the fraction flowing 2n the inner

(plasma) conductor (s given by 2q. (31).
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The overall net current inside radius b is the sum 2f the beam current Ib

ard the plasma currents Iph ard I From £qs. (25) and (31) we thus have

pa-

F b ph “pd
B I
b
ln(rb/a)
PSR Y YY) (32)
wnere T, = /Ib is the current gain immediately prior to pushing the source

off axis. Typiecally Foy <1 due to plasma return currents which were induced
when the on-axis scurce was origirally injected into the plasma.

Result (32) for the current gain F was derived assuming instantareous
beam displacement. We show in Appendix A, however, that magretic flux relaxes
siowly on a monopole decay time, L L/R. Result (32) can thus still be
applied provided the beam moves off axis to r_in a finite but short time

b

) <1, = ;ii (an(b/a) + al. (33)

Although the net current and monopole fields relax slowly, the dipole and

higher-order fields (in an azimuthal Fourier decomposition) relax rapidly on a

dipole decay time given by11

- (2med)7T, (34)

Comparisor of Egs. (33) and (34) reveals that the monopole and dipole decay

times are typically related by

to/td = 4(in(d/a) + al > 1. (35)

The plasma current thus spatially redistridbutes before it decays.
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The distinction between decay and redistribution of the plasma eddy

currents is important in understanding hose-induced current enhancement. The
resistive nose instability develops from a phase lag between dynamical beam
displacement and redistribution of the dipole fields. In the absence of a
phase lag, the dipole fields produce a restoring force which causes

t.1u

oscillatinn but no growth in beam displacemen The dipole decay time

T4 controls the phase lag and thus characterizes the growth rate of the

instability. During a monopole time T, > 1 large-amplitude hose

q’
displacement is possible. A hose-unstable beam of iong duration (>> rd) is
thus likely to produce, given sufficient propagation distance, a significant
increase in the net current.

For the ETA experiments where b/a = 10, Eq. (32) predicts that current
enhancements of 30 percent (F = 1.3) are possible even for modest
displacements of a few beam radli, ry = 2a. A current enhancement of nearly
100 percent (F =+ 2) i{s possible for large displacements, Ty * b - a,

2.3 Beams Propagating in Unbounded Neutral Gas

In the preceding treatments we assumed that a metallic drift tube was
present and that the gas conductivity everywhere within the drift tube was
sufficiently large to ensure space-charge neutralization. If this is not the
case, electrostatic terms must be inciuded irn the field and circuit equations.
Ae show nere, using a revised circuit analysis, that the phenomencn of hose-
induced current enhancement {s qualitativelry unchanged even if the drift tube

is absent or lies far outside the region where space-charge neutralization

occurs. The principal revision is that the monopole doundary radius b, where

Ezo = 0, ils not the pipe radius but a "vacuum radius" bdeyord which the space-

charge fields are unsuppressed.
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The revised circuit aralysis is based on Maxwell's equation for the axial

electric field:

22 2
z-l——z—z---'%—uws)w? (36)
at c

(3]
+

N
3]
Q>
N
n

Where p 13 the charge density. As shown by E. P, L.ee,22 this equation can be

simplified for beams which are both ultrarelativistic,

g = vz/c -1, (37

and paraxial,

mlm

d 3
- - [.a...) = 0(a/a,) << 1. (38)

Here vy is the beam axial velocity, a is a characteristic beam radius,
t =t - 2/8¢c is a temporal variable designating a particular beam slice,

and XB = Zva(BYmc3/eIn)1/2 is a characteristic betatron wavelength. The

electron charge-to-mass ratio is e/m, and Y & (1 -32)-1/2 is the usual
relativistic factor,

8y changing variables from (z,t) to (z,t) and by setting 8 = ! and

{_3_ - B " ] -
‘az)t 0, w“e can rewrite Eq. (36) as

g L A4m 3 . - (39
VLEZ cz e (Jb GEZ pe) (39)
which is typically valid to order Y-z << 1 and a/xB << 1. The neglect of

axial derivatives is denoted the "frozen-field z2pproximation" and follows from
the paraxial condition {38). The full Lee field equations, which are

presented in Sec. 4, =2mploy an additional approximation not needed here.
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For azimuthally symmetric conductivity, we may duplicate the procedure in
Sec. 2 and recuce £q. (39) to a circuit equation for the net conduction
current I_,! :
]

L 3T In + L.In = - (In - Ib)R (40)

where the effective system inductance is now defined by

2 “dr & 2 -
L =5 [T - (41)

c o

and the parameter [ is defined by

J'gf- 1L 1-0. (42)
o)

Here the radial profile of the distributed charge is given by

- _, r w
Qr,t) = Q, ! f dr r f de » (43)
. o o

while the distributed net charge is given f{rom charge conservation by

' Al
= - T
Q, (1) f dr r f 46 o = I (1)/c. (44)
o )
The revised circuit =2quatisng {40)=-{42) closely resemble the earlier versions
(14)~(16). The difference i3 the presence of Q and the apparent absence »f a
finite cutoff radius b {n the inductance formulae. Recall that a finite

cutof? is required for current erhancement to occur.
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t A finite cutoff in fact exists. At some large radius b outside the beam, :\a'
; the conductivity becomes 30 low that the medium acts as a vacuum: typically, E%Eu
E R
4vgr/ec < 0.1 (45) ggi

LS

.

l for all r > b. Beyond the vacuum radius b, the profile functions E and 5 3 ;
. equal unity by definition. Inductance formulae (41) and (42) can thus be :;;
F terminated without approximation at r = b, ;;E
, A
: For intense tightly pinched beams, conductivity in the corona region b
' outside the beam is generated both from collisional ionization by the expanded ?é;
k beam head and from avalanche ionization in the radial electrostatic field. isi
el

For such beams, the vacuum radius b is typically large (>> a) and insensitive ;E;

to displacement or expansion of the beam body. Moreover, the corona %SE‘
conductivity rises rapidly inside b so that space charge accumulates near igﬁ

r = b, Behind the beam head, the charge density p and profile 6 therefore }?{

approach zero for r < b, and Eqs. (40)-(42) become virtually indistinguishable ﬁij
from £qs. (148)-(16). Current enhancement for a given perturbation of the deam ;E;f

oody, where large hose growth is most probable, is thus almost the same \i

whether or not a metallic boundary is present at r = b (or at r > bH). ;;;

The presence or absence of a metallic wall beyond the vacuum radius does 52;

not directly affect current enhancement because a vacuum boundary, like a Ti

metallic boundary, shorts out the moropole electric field E,, which determines ﬁi?

the net current for axisymmetric conductivity. Z=ven for asymmetric
conductivity, the monopole contribution usually dominates because: (1) ¢ is
positive definite and thus has a large monopole component; and (ii) the dipole

and higher-order azimuthal components of E, decay much more rapidly than

Ezo' Circuit =quations (40)-(42) are thus usually a fair approximatinn to Zq.

(39) even if ¢ 1s asymmetric.
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The nature of the boundary can, of course, strongly affsct the dipole and

aigher-order fieids which control beam displacement. Large displacements are

.
]

» -
ol o

restrained, for example, by metalliic boundaries which carry a return current

E
3 that magnetically repels the beam, but are not restrained by vacuum boundaries
v,
j where the return current and associated wall forces are absent or weak. The
<
: nature of the boundary can thus alter the degree of hose growth and consequent
'é current 2nhancement, but does not alter the occurrence or qualitative benavior
X of the phencmenon.
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3. Seam Displacement in a Urniform Plasma

In this sectiorn we consider a broad charnnel with uniform conductivity
extending out to the metallic bourndary. The extensiorn in ¢ has a pronounced
effect on current erhancement and represents the opposite limit to the narrow
conductivity channels considered in Sec. 2.2. Unforturately, a circuit
aralysis is impractical for extended ¢ because the spatial distribution of the
plasma current can no longer be estimated a priori. We give instead a
complete field solution for a problem which is aralytically tractable: viz.,
ar infiritesimally thir current source moving at constant trarnsverse velocity
u through a medium of uriform arnd constant conductivity o¢. The underlined
words represent the simplifying assumptions. In subsection 3.2 we discuss the
consequences of relaxing some of these assumptiors.

The solutior t5 our model problem can be expressed in terms of two
dimersionless parameters: r,(t)/b and ao/b where ry(t) is the bean
displacement and 60 = cz/hwcu is identified as a skin depth. The solution
would devend or a third parameter, a/d, if the source were of firite
thickness,

Solutions are given with and without displacement currents included in
the aralysis. As expected, the displacement currents are unimportant provided
4/c < J.1. We snow in Appendix C that the solutions are irsensitive to the
cavity shape as well.

We descride this problem and its solutison in considerablse detail Secause
it provides additioral insight arnd because it reveals two new features. The
first is that current erhancement in broad conductivity channels does not
decome appreciable until the current source approaches to Wwithin a skin depth
of the conducting boundary. The second and more surprising feature is that

for 5°/b << 1, a current gain of three »r more is attained as the source is
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apout %o strike the boundary. Recall that Eq. (32) restricts the current gain
for a rarrow (and statiorary) conductivity channel to a maximum value of two.

gxtending the plasma conductivity out to the boundary thus reduces the current

e
)

vy

gain for mocest displacements, r_ < b/2, but increases the gain for large

o}

Ly

displacements rb - b,

" -

ey
Y

3.1 Formulation and Soluticn

Tor simplicity we consider a one~dimensional system in siab geometry.
_The extension to a two-dimensional system may be found in Appendix 2.1 In
our mocel, an infinitesimally thin current sheet of surface density Ib flows
in the z-direction. The current sheet is initially located midway between Lwo
perfectly conducting plates, PL ard Pp, at x = 0 and x = 1, respectively. We

3ssume tnat the medium between ?L and Pg is characterized by a constant

electrical conductivity o. We further assume that the current sheet has been

situated at x = x, 2/2 for a long time so that all plasma current has
Jecayed to zero at ¢t = Q. SFor t 2 0, the current sheet s given a unifsrm

x-ward motion, i.e., xb(t) = 1L/2 + ut where the speed u is assumed to be

constant,. e
The fields are governed by the diffusion equation for the longitudinal ?mj}

vector potential A.:

Here § i3 the Dirac delta function, and displacement currents are (initially)

ignored. The Dboundary corndition is

A_(0,%) = A;l.t)- Q. (47)
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The initial condition is
A (x,0) = (mii/e) (1 - l2x - 2|72y, (48)

reflecting the assumption that a steady magnetic field is established prior to
t = 0.

The current erhancement factor is given by

)
F(£) = 1 - (a/T,0) [ dx 3A,/0t, (49a)
o]

where -(a/c)aAz/at is the current density induced within the conductivity

channel. Alternatively,

F(t) = += [- & aAz’ + & A ] (49b)
Ib 41 39X <=l 4¢ 3 2=0

where the square bracket represents the wall currents, Zquation (43b) is
readily obtained by integrating Eq. (48) from x = Q0 to x = 1.

The diffusion equation (d46), together with its associated initial
conditions and boundary conditions, is solved in Appendix B. There wWe show
that just before the current 3heet makes contact with PR, the current

enhancement factor is given by [2f. 3. (313)]

. n2
s 7 T, w2
a1+ ctanh (22) - 27 (-1) e — (50)
e T nat n(n™ +« v°)
n oodd
where
2 -
T, = 4 )
v = rdif/ . ugl/c (31)
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2,2 !F,

is the ratio of the characteristic diffusion time T4ie 2 20827 /¢ to the \f
N
transit time T, * 3/2u. The infinite sum in Eq. (50) converges rapidly for e
LY
W
finite values of v. R
The enhancement factor F, as given by Eq. (50), is plotted in Fig. 1 as a ii,
~l
function of the normalized velocity v. The most interesting and unexpected i:f
NG
feature is that F approaches an asymptotic limit of three as v becomes large. g
from Fig. 1, one sees that F > 2 for v > 1, For v < 0.5, a good approximatior tﬁ
L
\'l
is § =1 + wv/2, as is readily verified from Eq. (50) and is also easily }ﬁ
deduced from a quasi-static argument. f
~f The time evolution of F gives additional insight into the physical }ij
prncesses, We show in Appendix B that Zf
n-1 2 x}"
o I - nt &
4 - Y e -
F(t) =1 + =7 (1) {-v2 cos(ZrE) + v sin(BXE) + 2o YTyl T
X LA n(nz . v2) 27t ZTt o~
X n odd S
L:; .:
.
(52)
This infinite series s absolutely and uniformly convergent for all t > 0. B
The evolution of F as a function of normalized time t/tt is shown in Fig. 2
for various values of v. Observe that current enhancement becomes appreciable 2i
only when Xy reaches within a "boundary layer" width of Pg, i.e., when L?
* N
S,
AR rt/v. The width of this boundary layer (skin depth) is on the order w
of 2/v, as suggested by Fiz., 2. This may aliso e deduced by a dimensiornal ‘{f
-.‘;\
argument from the diffusion Eq. (16). N
ol
In Appendix C we extend our model to two transverse dimensions and S
represent the beam as a current-gcarrying wire which moves at constant :ij
l~“-
transverse velocity inside a waveguide filled with conducting medium. we find i}
hES:
that all qualitative features of the one~dimensional mocel, including the aE
B
24 eh
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maximum enhancement factor of three, are essentially unchanged. Indeed, these
features are of such a universal nature that they are independent of the
dif > > Tt. In the next

subsection we discuss the effects of finite beam thickness and of ronuniform

irnitial location of the current source as long as t
velocity.

3.2 Interpretation and Generalizations

To elucidate the preceding unexpected features of a boundary-layer eflect
and F » 3 for v >> 1, we decompose the induced plasma current into two parts.
The first part is associated with relaxation of the magnetic field which was
present prior to ¢ = 0. This part is independent of the motion of the current
source. The second part is due to the transverse motion of the current
scurce, but is independent of the initial magnetic field. Sucn a
decomposition also enables us to predict the qualitative behavior wheg the
beam motion is nonuniform or the beam size is finite. These generalizations,
together with the influence of the displacement currents, will be addressed
Later,

The above mentioned decomposition is equivalent to expressing the

solution A, (x,t) to Eq. (U6) as a superposition:

Az(x,t) = Ah(x.t) + A

d(x,t). (53) m

In £q. (53), An(x,t) is the homogeneous soluticr and A4(x,t) is the cdriven

solution, We similarly decompose the plasma current density as

o 3Az o 3Ah aAd -
o s " s T T3 *on T Yoa (54)




e
- i\
%
R and the plasma current as ‘}'
NS
o b
£ o
.\ g 3 . . - )
: Ip S 3T f <:lx(A1,1 . Ad) z Ion + Ing: (55) o
o |
L4 ::-v
L P'
3 The homogenecus solution dy describes the relaxation of the magnetic Ce
L] . D
X LeX
N field which pre-exists before t = 0. It is governed by ’2d
> -4‘
) %A 3, S
- - £ 2.-4.4 (56)
: 4
w 3x2 ¢ ot -
and is subject to the boundary condition -y
N
Ah(o,t) = Ah(z.t) =0 (57) pa
e
% and to the initial condition B
- Sy
- A (x,0) = (mIse) (1= f2x-2]|/0). (58) s
N o
< o
X The driven solution Ay represents the response to the trarsverse aotion Iy
of a current source which is "switched on" instantaneously at time t = Q. ﬂ::t:
. That is, the initial magretic field plays no role in the driven solution Aj. ;::f-j
3 Thus A4 satis{ies
2 ]
- 3%a 3A 3
: S 8.2 Gl sk - (8)) '59)
5 i 2 e 3t v OV T R ‘ A
", X e
g LA
o and is subject to the boundary condition :3:::
) -:.:
N Y
X o
* Ad(O,t) = Ad(l,t) =0 (503 &
- :‘
"
g oY
L4 S
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=
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and to the initial condition

Ad(x,O) = C. (81)

Both Ap and Ad may be obtained by the method outlined in Appendix 8, Let

us first concentrate on A,. It is given by [cf. Eq. (B15)]

n-1
Ul o —_— 2rnt .
A_(x,8) = ——2 2 (~) 2 (3%) sin(22X) (62)
h e ne n21r d 2
n de

which relaxes on the time constant =t Ah also gives rise to J h which

dqif” p
decays on the same time scale. The evolution of Jph {s shown in Fig. 3 for

two values of v. Its spatial distribution is approximately gaussian. Note

that for £t < < <t I - Ib' as expected on physical grounds and readily

dif’ “ph
verified from solution (62). Thus, in the limit v > > 1, Iph contributes one

unit to the current enhancement factor F.
The driven solution A, gives rise to the unexpected features mentioned at

the beginning of this subsecgtion, It is given by

uz:b - 2 4 sin (2IX)
Ad(x.t) s 5-1 ﬂn(na . v2) [} (83)
where
2
ng
-( )
2T41¢
dq(t) a n sin(nh) - v coa(rh) - e (n sin(nno) - v cos(nho)]
(hl4)

with h = n(1 + :/rt)/z and ho s 7/2, The evolution of de(x.:) is shown in

Fig. 4 for v = 0,5 and for v = 4,
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Ae note that de(x,t) is negative for t/tt < < 1 but becomes positive

for t/rt + 1., This benhavior may be understood by observing that J d is the

P
plasma current due to a current source that is switched on at time t = Q.

Initially, Ad = 0. An induced field and current are thus generated at time
t = 0 so as to maintain zero magnetic field by Lenz's law. Initially, Ipd

exactly cancels Ib' i.e., I - -Ib as t -+ 0’. A major portion of the

pd
negative inductive e2lectric field lies anead of the sheet current, especially
when v > > 1 [of, Fig., 4], However, as this inductive electric field "wave
$ront" approaches the conducting boundary Pg. it is reflected and its polarity
i3 changed in the same manner as when a voltage wave is reflected by a short
on the path of a transmission line, 1In this analogy, the transmission line is
iossy. But in the limit of high electrical conductivity (v > > 1), the

reflected current pulse has not decayed substantially, i.e., I + 4+ Ib as

pd

t -+ T, for v > > 1. Hence, F+ 1 ast +0, while F+3ast -+, forv>>1,

t
In fact, a simple analytic solution for the driven solution Ad and the
associated current density de may be derived in the limit that v > > 1,

First, it is easily seen that Eq. (59) admits a wave-like solution of the form

A;(x,t) « £ [{x - xb(t)]. Such a solution yields an incuced current density

given by
] H x < X
1 - = ’ b ’ Y
de(X.-) wav - av(x~x_)/4% 95
= (“I——]e o] P 4 Xy

which s indeed an approximate solution when the current sheet is far from the
wall, The important feature is that Jp; lies entirely ahead of the beam and
thus reaches the wall before the beam. Because A;(x,t) does not satisfy the
boundary condition A;(l,:) = ), an image current source of the farm

-Ibé[X°[22-xb(t)]} nust Se added to render the vector potential zerso at

X = 1. Associated with this image is the plasma current density
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0 , X > 28 - x,

. Jamey = ) 2 (661
: ( 1b ) ewv(x - 2%+ xb)/l’ x <2 - x

which represents the reflected wave previously mentioned. Summing all
1 2

s currents (Ib, Iph’ Ipd' Ipd) between P| and Py yields a current erharcement
X factor of 3 as xb'* 2, since the contribution from Ip; becomes regligibly
A small while the cortribution from Ipi becomes sigrificart. Egquatiors (65) an

(6¢) demornstrate why current ernhancement occurs within a tourndary layer of
width /v of Pp.

For simplicity of exposition, the calculatiors of this section have been
based on idealized model assumptions., We now relax some »f these assumptions
ard use the insight provided by our results to predict what happens when the
* beam has finite thickress or nonuniform velocity to the wall. (One could also
draw inasight for the case of ron-uniform conductivity.) Corsider first the
reglect of finite beam thickness. Thick beams can be treated as a linear

superpesiction of thirn beams. A beam is thirn if its thickness 2a is small

compared Wwith the skin depth 60 a l/rv = cz/uwou. If the beam is thick, the

[}

limiting value »f F is ra2duced because part of the beam is more than one skin
depth away from the wall when the beam’s leading edge reaches the wall., High

current erhancement is thus possible in broad conductivity channels only if
2,
a << ¢“/Umau << 1, (67)

Current gzains above tnree are possible in broad cnannels if the beam
accelerates to the wall., To show this, consider 3 case where X, mairtairs

uniform motion at speed u until ¢ = T1 <t Sut undergoes an impulse

t’

acceleration so that dxb/dt =u, = constant (> u) for < > T1. For time t <

af bl NE AR AN

T,, the solution remains tne same as that obtained in the previous subsection,
1 ;

Specifically, F(T,) > 1, Ffor time ¢ > T,, since u, i3 uniform, we may again
1 1 1
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use the previous section; the only modification 13 that the solution is time-

b ]
,E translated by T, and that the "initial cordition" at t = T, must reflect a
LY
2 larger initial current, F(T,)I,. Now, for u, <+ =, we have as x, ~ 1,
” F a (Ib + Ipd * Iph)/Ib =1 + 1+ (Ipn/Ib) = 2 + F(T1) > 3. Here, we have
E used the result that Ipd -+ Ib irrespective of the "initial condition", In
? retrospect, it is somewhat surprising that F » 3 regardless of the magnitude of
- u so long as it is large and constant, but that F may exceed 2 if du/dt > 0.
-
2 we saw in Sec. 2.2 that the current gain for narrow and statiornary
: conductivity channels is restricted to F < 2; this low value of Fmax occurs
< because only the beam current Ib physically displaces to lower the inductance
; L. For the broad channels discussed in this section, Fmax can be as large as
- three or more because a portion of the plasma current, Ipd' moves with Ib to
‘2 further lower L. Maximum current gain is achieved if all current moves with
; I, so that the firal value of L(> 0) is mirimized. This is the case for a
- narrow conductivity channel which physically displaces with the beam. 1In this
t case, the final values of L, and F are limited cnly by the finite breadth of
i the beam and channel, wnich prevents all the net current from simultanreously
N reaching the boundary. By applying flux conservation to inductance formula
E (Ad4) of Appendix A, we conclude that ir cylindrical geometry the maximum
vg current gain is given by
"d
]
)

P
\ where a is 2 characteristic beam-charnel radius, b is the boundary radius,
3 02 < %, and the beam displacement r, varies from zero to (b - a}. Similar
i arguments applied i planar geometry produce

Foax ™ 1/a (68b)
- 30 -
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“here 1 i3 the plate separation and 2a characterizes the thickness of the beam
and conductivity sheets. Hose-unstable beams are unlikely, however, %o
produce current gzains much above a factor of two because they leave behind a
highly conducting on-axis channel that traps plasma current and magretic flux;
see Sec. 4.1,

The displacement current has been neglected thus far, and in the
rumerical simulations of the next section as well. While the physical
description given here indicates that the displacement current effects should
be small, we nevertheless repeated our calculations with the displacement
current term (unc)-182Az/at2 included on the left-hand side of Eq. (46). In
addition to conditions (47) and (48), the initial condition aAz/at = 0 at
t = 0 is introduced to completely apecify the solution Az. The current
enhancement factor F is calculated according to Eq. (49b) which now implicitly
includes the displacement current. The result is shown in Fig. 5. We
corclude from Fig. § that the displacement current generally increases the
ennancement factor F, but that F does not exceed a value of 3.2 if u/c¢c < 0.3.
This explicit demecnstration of the urnimportance of the displacement current
provides additional confidence in Lee's simplified field equations which are

used in the simulations presented in Sec. 4.
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4, Computatioral Models

The resistive hose instability has been widely studied using linearized

simulation models'®s19,20

which are valid only for small beam displacemerts.
However, the current multiplication effect described in the previous sections
is an irherently norlinear phenomenon, In this section, we describe nonlinear
simulations using a new particle code, SARLAC. This code provides a self-
corsistent treatment of the hose instability for large displacements ard
reproduces the current erhancement effect. A more complete description of tne
code is given elsewhere.z1
SARLAC employs a number of approximations which have been widely used in
studies of electron beam propagation. Longitudirnal ard transverse beam
dyrnamics are decoupled and treated separately (to order v /vz » 21ra/xB K1)

by invoking the ultrarelativistic approximatiorn (37) and the paraxial

conditior (38). The field solver is based on the Lee field equations:22

27 . o o br - g oA

VJ_(A %) = (I, - ¢ Bc) (69)
and

2 94 Uxng

V" = a 7 o|=—= ¢ ’ 0

L5 U (70)

which are sbtaired by dropping derivatives »f the transverse vector gotential
I
g =1

2.3. Here p is the electrostatic potential, and A = A, = ¢. The independent

- 0) ard by employing the frozen-fieid approximation discussed in Seq.

temporal variable used in SARLAC is not t but its equivalent, 7 ¥ ¢t = 2t - 2,
Which i3 the distance benind the beam head. The axial electrig field is given

oy

A (71a)
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while the transverse electric and magnetic flelds are given respectively by

E =-Y (7T1b)

1 5° ’
and

5 =9 (A+¢)x 2. (T1¢)

TR

A=3=0 (72)

at a specified pipe radius b.

The conductivity o is treated by a simple rate equation:

3 2
3% - KJb + via/c - B.p0 (73

where in air we use the beam collisional ionization coefficient K = 6x1o'“

-15 sec/cm~atm. The

cm/statamp~sec and the recombination coefficient Sr = TXi0
gas density p is specified in atm. The electron-avalanche ionization rate

v, = vi(p;E) is a complicated function of density p and electric fieid E, and

i
is given by Egs. (16) and (iT7) of Ref. 18.

The beam current density Jb 13 calculated in the full SARLAC code by
accumulating contributions from the simulation particles onto a polar mesh,.

Since v, = ¢, all simulation particles remain at constant g and move in the

z
transverse plane in response to the fields calculated from Egs. (69)-~(73).
Because Eqs. (59)-(73) do not involve derivatives in z and because field

information can propagate only forward in g, SARLAC is structured differently

from conventional simulations. SARLAC treats one z-slice at a time, thus

K .
.......



reducing the number of particles in the simulatiorn at any given time to
- !OJ. Each beam slice i3 propagated forward in z until a specified maximum
propagation distance Zgax 1S reached; at this point, particles are loaded
into the next slice at z = 0, and the process is repeated.

Nonlinear particle simulations similar to SARLAC have been develored by
Freeman®3 and Godtrey.au The major novel feature of the SARLAC model is its

field solver which first does a predictor step using the agimuthally averagec

conductivity, followed by two corrector steps. This grocess i3 fast and thus

allows a large number of Fourier modes to be retained.

4.1 SARLAC Particle Simulations

N
LY
: The SARLAC particle code was designed primarily to treat the nonlinear
! evolution of the resistive hose instability. Thus, the »eam displacements AR
" o~
: X(z,z) and ¥(z,2z) in the full simulation are calculated self-consistently f{rom o
' N
i the particle dynamics. The results below are for a 7 kA, 5 MeV beam with a ;;ﬁ
. ncminal radius of aj = 1.5 cm. The beam is injected into a conducting drift o
; tube of radius b = 13.5 om filled with air at 230 Torr (p = 0.3 atm). The ;{f
» .
A X
i deam profile was tapered at injection and had a rise length of e = 210 cm ':i
- (7 ns). These parameters closely resemble the ZTA experimental parameters {1
. reported by Chambers, et al.> e
i Figure 5 is a plot of the neam and net currents, Ib(c) and I _(g,2), 3t f
- el
- various propagation distances z. Initially, I, is everywhere smallz2r than N
- Ib. A3 the bYeam propagates :to large z, the value of i, rises in the beam tail Q
- and soon exceeds Ib‘ At z = 270 cm from injection, the peak net currant is -
! e
2] 11.5 kA, as compared to Ib = 4,83 kA at that point in the beam. The peak net e
\ o
: current is thus 70 percent larger than the beam current, o
'« :\‘:
i The asscciation of current enhancement with large-amplitude hose astion '\f
- . " D
. i{s shown in Figs., 7 and §. These figures plot the x and y gositions of a }{.
. N
subset of simulation particles versus 7 at constant z, As is well-xnown," RS
&
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the nose amplitude increases with 7 and (for a while) with z. At z = 130 cm
(Fig. 7), the beam displacements are of the order of the beam radius, and
current enhancement is not observed. By z = 270 cm (Fig. 8), the hose motion
of the beam is nighly ronlinear, and the beam is close to strikirng the wall.
For ¢ < 500 cm, the beam radius decreases with g as I and the resulting pinch
force build up. However, in the tail of the beam, the beam expands even
though In exceeds Ib‘ This is a nonlinear effect which arises when the beam
moves out into regions far from the pipe axis where the fieids gererated by
the front of the beam have fallen off,

The spatial distribution of fields and currents can be seen in contour
plots at a fixed point in g and z. Figure 9 is a contour plot of the beam
current density Jb at g = 630 cm and z = 270 cm, showing that the beam has
meved ciose to the drift tube wall. The corresponding plot of conductivity ¢
in Fig. 10 shows that ¢ is spread over a much larger area yet still peaks near
the pipe axis. Contour plots for the axial electric field E are shown in
Fig. 11 and display a characteristic two-lobed structure. As the beam spirals
ccuntar-ciockwise and enters virgin air, it induces a field which drives
plasma current opposite to the beam current. As the beam leaves an area, it
causes the field to change sign and thus drives plasma current parallel to the
beam current. The plasma conductivity is higher in the latter region.

Current multiplication results when the integrated current {n the forward
current lope exceeds that in the return current lobe. The net current lensity

contours, J, = Jb + cEz, are shown in Fig. 12. J, ls spread over a larger

n
area than Jb and its centroid gererally lies closer to the pipe axis.

The phenomenoclogy seen in this simulation most closely resembles the
model in Sec. 2.2 for rarrow conductivity channels. Although the conductivity
{3 spread over a large area, it geaks near the pipe axis and is low near the

pipe wall. As the beam moves closer to the wall, the boundary-layer effect

discussed in Sec. 3 should emerge., Current gains muech above a factor of two
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are unlikely, however, because the beam is broad and the conductivity is low
in the outer regions. SARLAC runs must typically be terminated before the
beam strikes the wall because the accuracy of the field solver becomes suspect
in this limit.

The simulation results from SARLAC are similar to the ETA experimental
results. In particular, appreciable current erhancement is generally observed
orly after the beam has propagated sufficiently far that large-amplitude hose
motion has occurred. Current enhancements as high as 90 percent (F = 1.,9)
were observed on ETA.3 Recent experiments by Raleigh and Greigs have
confirmed the correlation betweer hose displacement and current erhancement
through use of a stabilizing solenoidal field. A solenoidal field of several
kilogauss greatly reduced beam displacement and eliminated the chserved

current erhancement. A similar effect was reported by Ipatov, et al.7

4.2 Simplified SARLAC Simulations

In this subsectiorn we present results from a simplified version of the
SARLAC code. As in the aralytic work described in Secs. 2.2 and 3, we do not
use self-consistent beam dynamics but instead represent the beam as a rigid

structure of constant radius whose vector displacement r. 1s specified.

)
Unlike the aralytic work, however, the simulations do incorporate a self-
consistent treatment for the plasma conductivity. The removal of Seam
dyramics from SARLAC erables us to study the dependence of current ennancement
on inuividual beam and cavity parameters as distinct from the dependence on
hose growth in total.

The nominal parameters for this study are: beam current Ib = 7 kA, beam
duration Cmax = 103 cm, beam current rise ;r = 210 cm, beam radius a = 1 cm,

pipe radius b = 7 cm, and gas density p = 1 atm. The beam centroid i (X,Y)

is taken to be a regular spiral growing linearly in %, as discussed in Ref. 14

..................
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for hose instability in the beam body: X(g) = 6 x 10 ¢ sin [7.3 2n (2/3)]
ard Y(g) = 6 x 10-3; cos [7.3 &n (g/3)], so that the beam displacement
distance rb(c) =6 x 10-3c. The current enhancement factor F(z) = In(:)/lb(‘)
is plotted as curve (a) in Fig. 13. Note that current eirhancement does not
become appreciable until rb(;) approaches half the wall radius (¢ > 500 cm).
For a given displacement, the erhancement is smaller than in the previous

ar .
simulation, due primarily to a smaller displacement velocity EEE‘ |

The theoretical basis developed in Secs. 2 and 3 predicts that current
enhancement is a boundary effect arising from magnetic flux compression |
against either a metallic pipe or the "vacuum conductivity" radius, whichever

is smaller. Increasing the boundary radius for a given beam perturbation

should therefore reduce the enhancement. This prediction was confirmed by

enlarging the pipe radius from 7 cm to 49 cm while keeping the remaining
Simulation parameters unchanged. As seen in curves (a) and (b) of Fig. 13, F
does decrease but not dramatically because the monopole fields now terminate
at the vacuum boundary, bvac = 10 em < bpipe = 49 cm.

The effect of decreasing the beam radius a from 1 cm to 0.75 cm is shown

in curve (c). The effect is small, as expected. The maximum current gain in

this case was F(3%X) a 1 8 The fluctuations in F seen at large displacements

in Fig. 13 are indications of field-solver difficulty.

An important effect not yet discussed is the polarization state of the
hose instability. The circularly polarized nose mode assumed here causes a 5
monotonic¢ increase in the beam displacement distance rb(;). AS a result, the ;
eircuit inductance L decreases steadily while the net current I, smoothly
rises. If hose growth were plane polarized (perhaps due to an asymmetric
initiatiorn), the displacement L inductance L and net current In would '

oscillate, as seen in Fig. 14 where a beam centroid motion of X = 0 and

Y= 3 x 10-3: cos [7.3 in (g/3)] was imposed. A typical experiment produces
random hose polarizations, and hence In should increase more or less steadily

but with some irregular fluctuations, |
37
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5. Conclusion

: We have shown that current enhancement is a natural consequence of the %5
1~ resistive hose instability for electron beams propagating in dense gases. The ;;
ﬁj degree of enhancement depends on the displacement amplitude of the beam Eiﬁ
;; relative to the boundary radius where the monopole electric field E,o falls to E§~
‘g zero. The boundary radius is usually determined by the ground returns (e.g., -E
‘12 metalli¢ drift tube) present in most experiments, If the return-current -
E; structures are far from the beam, current ennhancement still occurs but the
:: poundary radius is determined by the location where beam—~generated ié
conductivity becomes vanishingly small. :;
The physical basis for current enhancement (s conservation of magnetic EE
flux. As a beam displaces off axis, it lowers the effective inductance. The {;
:3 circuit responds by raising the net current so as to conserve magretic flux ;E
? {or energy) within the conducting plasma. Enrhancement takes place provided E;
- RS
; the beam displaces within a monopole time Ty " L/R where L is the ecircuit *}
; inductance and R is the plasma resistance, ;E
. . 1
2: The plasma eddy currents which produce current enhancement also drive the E?
“ nose instability. The hose instability develops on a plasma dipole decay time Ff
;: Ty Large hose growth is therefore possible in a monopole time T > T4 ;i
- Beams undergoing large-amplitude hose motion are thus apt to produce i;
substantial current enhancement. Yote tnat the hose instapility, in contrast %ﬁ
Lo the two-stream instability,1 produces current 2nhancement regardless of tne E:
sign of the bYeam charge. A positive-ion beam undergoing hose motion would EE
: thus induce electric flelds that again raise the net current, l;e
é? Net currents as large as three times the beam current or more are ;ﬁ:
. -
3 possible if the plasma conductivity extends out to the boundary radius. In :j
; practice, the current gain rarely exceeds a factor of two, due both to the j@
_ 38 lk
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restricted distribution of plasma conductivity and to the finite size of the
beam. OQur particle simulation results showed current enrhancements of =~ 70

percent, which is in good agreement with the =ZTA experimental results.
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Appendix A: Inductance Formulae
We present without derivation some inductance formulae for several
different configurations, These formulae when inserted into c¢ircuit equation
(14) enable one to compute the net current for a prescribed beam perturbation,
The maximum current erhancement resulting from sudden displacement of a beam
outside an on-axis plasma channel is given as an example.
The inductance for an cn-axis beam and plasma of characteristic radius a

is given from Eq. (15) by

L = -2—2 [Ln(b/a) + a] (A1)
(o]

where b 1s the pipe radius and a is a parameter that depends on the detailed

spatial distribution of the plasma conductivity and net current, Typlcally,

(A2)

2
A
=)

If the pbeam and plasma channel expand self-similarly, the parameter L in

circuit equation (14) should be set to

L .15%% (A3)

For a beam and conductivity channel of radius a which are displaced off-

axis to a location r

b’
2 o - *y
L= Cen( = ) + al. (AY)
(o]
N
1 b

............... S
.....

et A
. e

. . - LY \“-n A " AN '.-.‘ -" ) .
.......... AR S A




Although the conductivity in this case is not azimuthally symmetric about the

pipe center (unless r, = 0), Eq. (14) nonetheless remains a reasonable

]
approximation. If the current carriers in the conductivity channel physically

displace with the beam, one snould set

{ -3

Otherwise, Eq. (A3) should be used. An example of the latter application is
an ionized channel consisting of plasma electrons and ions that do not move
laterally but are created by the beam and then destroyed by recombination as

the beam moves outward.

If only the beam is displaced while the conductivity channel remains on

axis, we can use Eq. (10) to compute a channel self-inductance given by

2
Lp = :5 (an(b/a) + al, (A6)

and a beam-channel mutual inductance given by
2 lad - »
L == {in(b/r ) + a’] (A7)
b 2 b
e
where in general a’ = a and where
r_ % Maximum {a;rb}. (48)

b

Equation (1Q0) can then be rewritten as

3 - +a_. - - - T
Lp 3¢ (In = Iy) 3T (LbIb) (I, = I))R. (A9)




For sudden displacement of a beam outside an on-axis plasma channel of ﬁﬁx
constant radius a, circuit equation (A9) reduces to conservation of magretic !

flux: »

At g ok

GELp(In - Ib) + LbIb] = 0. (A10) y

f we ignore the usually modest changes in a and a”, relationship (A'0) when : ‘%p

coupled to inductance formulae (A6) and (A7) yields

(in(d/a) +al (I, -1,) = in(r, /a)I,. (A11) S

;'_;.;' (

The maximum possible current gain is therefore given by tﬁ;:
:;‘_ ::-

F = In/Ib i:f

o

zn(rb/a) R

- B , ————— EARA

o " In(v/a) * a (a12) s

o

where 7, = Ino/Ib is the current gain prior to beam displacement, If the i
displacement occurs rapidly compared with a plasma dipole decay time Ty the ?;;
R

driven plasma current resides on the plasma surface and the parameter a in Zq. o
oA

(A12) should be set to zero. For slower displacements, a i3 unequal to T
zero. Observe that approximation [A10), and hence result (A12), is valid only _ :iff
if the displacement occurs rapidly compared with a monopole decay time, 35?
'.': :1‘

T, " Lp/R. See also the time-dependent solution given in Ref. 10. -
e N
Inductance formulae can be formally given for brcad conductivity channels ﬁi:.

AR
but are generally of little practical value. For example, for uniform g the gi:'
LY

L
distribution of plasma conductance is given by ﬁJh
::':,{_,
AN
o
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i(r) - (r/b)z.

Inductance definition (15) then reduces to

2 2 ol
rn = £ dr r 3

(A13)

(A14)

(A15)

Inductance formulae for the planar geometries considered in Sec., 3 are

similarly straightforward. Unfortunately, these expressions depend strongly

on the spatial distribution of the electric field which can be determired only

after a full fleld aralysis. A circuit analysis is then unnecessary and

superfl.ious.

L) £ )
IOk

R AR

ir L2
\
’l

i




2, &

.
£a’s' 22 2

AN N

Appendix B: Solution to Zquation (46)

In this appendix, we derive the solution to Eq. (46) via Fourier
aralysis. Since the current enhancement factor F is independent of Ib' we set
ulIb/cw = 1 ard introduce the dimensionless variables f = w¥x/1 and

T = wt/21di to normalize Eqs. (46)-(u48) as

f
32Az M, .
-a—2+raa(a-n(r));o<g<n,o<r<-5 (81)
£
2,00,1) = A (%,%) = 0 (B2)
A,(£,0) = (a/4) D1 - | 28 - «|/x1. (B3)
In Eq. (81)’
h(t) = % . v (BY)

where v s the dimensionless veloecity defined in Eq. (51) of the main text 3and
T4y is the characteristic diffusion time,

Representing the solution as a Fourier series

A (g,1) = ) a (1) sin ng, (35)

n=1

we note that the boundary conditisn (32) is automatically satisfied and that

the initial condition (B3) yields

LS
1 (n = .. (om
a,(0) = = [ dgA_(£,0) sin ng = == sin (F%). (36)
Q nn
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Upon substituting (85) into (B1), we obtain an equation for a_(t):

da_(1)
n 2 2 ny
—7 R an(r) -3 sin [5- * nvt] (BT)

which may be easily integrated to yield

2
2 1 2_. -n 1
a (1) = £ —————H{ n°sin nh - nv cos nh + e
n r nZ(nZ . VZ)
(v?sin nh + nv cos nho)} (88)

where h is defined in (B4) and no = %/2, The initial condition (36) has been

used to obtain (BS).

The current enharcement factor F is given by [ef. (49b)]:

aAz aAz ®
F(t) = + 3¢ - F = 2 Z nan(r) (B9)
§=0 §=w &"bad

4here we have used (BS) to obtain the last expression. Some care is to be
axercised in evaluating the infinite sum since the first term in the curly
bracket of (B8) contributes to a nonuniformly convergent series in (B9). To

remove this nonuniform convergence, let us write

s 2 n2 irn nh 4o 1 v2
23 (e23em ) .29 (= - ) sin nh
rnal v p(qz + vg\ T n=l n q(nz +- VZ)
A odd o ’ # odd -
2 N
@ v “
.4 sir nh S
1 - Z- n(n2 + v2) (B10) X
% édd Y
R
where we have used the identity
45
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sin 3h . sin Sh
3 5

AlE

[sin h + 4+ esel =1; 0<Ch <, (811)
Note that the infinite series in (B11) is nonuniformly convergent, but
converges in a point-wise manner for all h in the open interval (0,7). We now

substitute (B8) into (89), and use (310) to write

2 .
Flg) = 1 { v-sin nh nv cos nh

v sin(gi)} (312)
which may readily be compared with Eq. (52) in the main text. The infinite
series in (B12) is absolutely and uniformly convergent. As the current sheet

i{s about %to touch the conducting plate, t » w/2v, h + «, and Eq. (B12) yields

(B14)

This identity may be established by a standard technique of complex analysis.
Clearly, the method detailed in this appendix may readily be used to

construct the homogeneous sclution Ah and the cdriven solution Ad, as suggested

in Sec. 3. For example, the homogeneous solution Ah is obtained by setting

the right-nhand members of £qs. (81) and (B7) equal to zerc. Then, (BS) - (37)

yield
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which is rewritten as Zq. (53) of the main text upon using (B6).

solution A, may be obtainred similarly.
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Appendix C: Extension to Two Dimensions

In this appendix we demonstrate the insensitivity of the current
enhancement mechanism to geometry by extending the analysis of Sec. 3 to two
dimensions, We also demonstrate that our results are insensitive to the
initial location of the electron beam for v >> 1,

Consider an infinitesimally thin current-carrying filament ("wire")
situated in a square channel of side length %, inside of which the medium is
characterized by a constant, uniform electrical conductivity. We again assume
that the wire sits inside the c¢hannel for a sufficiently long time prior to t
= 0 that a steady magnetic field is already established at ¢t = 0. For ¢t > 0,
the wire is given a uniform x-ward velocity u.

In terms of the normalized variables outlined in Appendix 3, the above
system (s described by the vector potential Az(s,n,t) whose evolution is

governed by

3, 3%,
T T T3 txt §(g - a(t)) s(n - "o)'
3¢ an
0<g<T,0<n<w, >0 (c1)

where £,n are the normalized spatial (x,y) variables and t = nt/2rdir as

before. The initial coordinates of the wire are (I,n) = (ho. no).

For t > 0, #e assume

n(t) = ho + VT (C2)

and the instantenous coordinates of the wire are (§,n) = (h.no). To

demonstrate the insensitivity to thne gzeometry, we 1ot ho' U be arbitrary in
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tnis appendix. [Of course, h_, U h, g, n are all restricted to lie Dbetween

o] ’..J;
J and w]. Equation (C1) is subject to the boundary conditions fgi
“u N
'.‘b’ "
. 3
\ N
Az(O.n.t) = Az(w,n.r) - AZ(E.o,r) = AZ(E.n,t) =0 (€3 Sﬁg
o
, N
and to the initial condition )
= 2 b r—-—L———) sin nh_ sin mn_ sin nE sin mn ;iiéj
A_(§,n,0) =} ] 2 ' 2 2 e T o St i (21) e
z 7 n" o+ o
n=1 qm=1 RS
which reflects that a steady magnetic field is already established at t = 0. :{:j
The solution to Eq. (C1) may be represented as a Fourier series &}}ﬁ
.-_:a:
Y
L] @ RECK
A(E,n,t) =Y ¥ a (1) sin ng sin an. (¢s) T
z mn o
Nn=l m=1 DR
In so doing, the boundary conditions given in (C3) are automatically R
satisfied. Upon substituting (CS) into (C1), we obtain the first-order Zf;%
ordinary differential equation for amp(r): 'iﬁij
da_ (<) o
mn 2 2 i . el
o + (m~ + n )amn(r) - ;5 sin nh(t) sin LU (C%) | ;Zi’
which may easily te solved upon substituting (C2) into {C§) and using the a:
initial cordition
a _(0) = : ) sin nh_ sin @n
an b (n2 + m7) °
The current enrhancement factor is
T T
3
F(3) = 1 = 5= [ ] dgdna_(g,n,1)
o9
49
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which may also be expressed as

® ° 42 . 22

7 Y a2 v a) 129

F(1) 5'1 5'1 ™ ‘amn(t). {(C9)
a,n odd

The last expressiorn is analogous t9 Eq. (89). The non-urniform convergence in
the infinite series may be handied in a similar manner as in Eq. (B10).
fquatiorn (C9) may be used to calculate the current erhancement factor as
the wire is about to reach the side £ = v, [i.e., 1 » %), This limiting value
of F is shown in Fig. 15 as a function of the normalized velocity v for
various combirations of the iritial coordinates (ho’“o)' Note the
ingsensitivity to (ho'"o) arnd the similarity between the curves in Fig. 15 and
that 2n Fig. t. Thus, the limiting value of F + 3 is established. We have
also shown that the evolution of F(t), as governed by (C9), is similar to Fig.
2. Coupled with the interpretation given in Sec. 3.2, we may conclude that
the much simpler srne-dimensional model provides a sound physical description

for current 2nhancement.
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Figure 3: Evolution of the homogeneous current density Jph' in units »of

cwa/uzz, for v = 0.5 and v = 4, The arrows at the bottom mark

the instantareous locatisn »f the current source for each of the

indicated curves.
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Figure 4: Evolution of the driven current density de, in urits of
cwa/lm.Z, for v = 0,5 and v = 4, The arrows at the bottom mark

the instantareous location 2f the current source £sr each curve.
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distance 7 behind the beam head and propagation distance z, for

the SARLAC particle simulatiorn described in Seec. 4.1.
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Figure 7: Positions x{(z) and y(z) for a subset of simulation particles after

propagating z = 180 ocm.
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Figure 8: Positions x(z) and y(g) after propagating z = 270 cm.
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Figure 11: Contour plot of the axial electric field Ez(r.e), in units of
mcz/eao, at ¢ = 630 cm and z = 270 cm. The red and yellow

contours define regions where E, drives return plasma current

(oEz/Jb < 0) while the green, blue, and violet contours are where

E, drives forward plasma current (oEz/Jb > 0).
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Figure 12: Contour plot of the net current density Jn(r.e), in units of
mc3/lhta§e, at ¢ = 630 cm and z = 270 cm. In almost all regions,

J /9, > 0.
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(ho,no) of the current source.
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